Advertisements
Advertisements
Question
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Solution
We know that rationalization factor for `3 + 2sqrt5` is `3 - sqrt5`. We will multiply numerator and denominator of the given expression `(3 - sqrt5)/(3 + 2sqrt5)` by `3 - 2sqrt5` to get
`(3 - sqrt5)/(3 + 2sqrt5) xx (3 - 2sqrt5)/(3 - 2sqrt5) = ((3)^2 - 3 xx 2 xx sqrt5 - 3 xx sqrt5 + 2 xx (sqrt5)^2)/((3)^2 - (2sqrt5)^2)`
` = (9 - 9sqrt5 + 10)/(9 - 20)`
`= (19 - 9sqrt5)/(-11)`
`= (9sqrt5 - 19)/11`
Putting the value of `sqrt5`, we get
`(9sqrt5 - 19)/11 = (9(2.236) - 19)/11`
`= (20.124 - 19)/11`
`= 1.124/11`
= 0.102
Hence the given expression is simplified to 0.102
APPEARS IN
RELATED QUESTIONS
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.