English

If x=3+23-2 and y=3-23+2, then find the value of x2 + y2. - Mathematics

Advertisements
Advertisements

Question

If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.

Sum

Solution

`x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`

(a + b)2 = a2 + 2ab + b2

Also `x = 1/y` or `y = 1/x`

Let a = x

b = y

(x + y)2 = x2 + 2xy + y2

But we know `y = 1/x`

`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`

`(x + 1/x)^2 = x^2 + 1/x^2 + 2`

`x^2 + 1/x^2 = (x + 1/x)^2 - 2`

= `((sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) + (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)))^2 - 2`

= `(((sqrt(3) + sqrt(2))^2 + (sqrt(3) - sqrt(2))^2)/((sqrt(3) - sqrt(2)) xx sqrt(3) + sqrt(2)))^2 - 2`

= `((3 + 2sqrt(6) + 2 - 3 - 2sqrt(6) + 2)/((sqrt(3) - sqrt(2)) xx (sqrt(3) + sqrt(2))))^2 - 2`

Here the denominators form the expansion as

(a + b) × (a – b) = (a2 – b2)

Here `a = sqrt(3)`

`b = sqrt(2)`

`a^2 = (sqrt(3))^2`

= 3

`b^2 = (sqrt(2))^2`

= 2

= `(10/(3 - 2))^2 - 2`

= 102 – 2

= 100 – 2

= 98

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Number Systems - Exercise 1.4 [Page 12]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 1 Number Systems
Exercise 1.4 | Q 5. | Page 12

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×