Advertisements
Advertisements
Question
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.
Solution
`x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`
(a + b)2 = a2 + 2ab + b2
Also `x = 1/y` or `y = 1/x`
Let a = x
b = y
(x + y)2 = x2 + 2xy + y2
But we know `y = 1/x`
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`(x + 1/x)^2 = x^2 + 1/x^2 + 2`
`x^2 + 1/x^2 = (x + 1/x)^2 - 2`
= `((sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) + (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)))^2 - 2`
= `(((sqrt(3) + sqrt(2))^2 + (sqrt(3) - sqrt(2))^2)/((sqrt(3) - sqrt(2)) xx sqrt(3) + sqrt(2)))^2 - 2`
= `((3 + 2sqrt(6) + 2 - 3 - 2sqrt(6) + 2)/((sqrt(3) - sqrt(2)) xx (sqrt(3) + sqrt(2))))^2 - 2`
Here the denominators form the expansion as
(a + b) × (a – b) = (a2 – b2)
Here `a = sqrt(3)`
`b = sqrt(2)`
`a^2 = (sqrt(3))^2`
= 3
`b^2 = (sqrt(2))^2`
= 2
= `(10/(3 - 2))^2 - 2`
= 102 – 2
= 100 – 2
= 98
APPEARS IN
RELATED QUESTIONS
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Write the rationalisation factor of \[\sqrt{5} - 2\].
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`