Advertisements
Advertisements
प्रश्न
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.
उत्तर
`x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`
(a + b)2 = a2 + 2ab + b2
Also `x = 1/y` or `y = 1/x`
Let a = x
b = y
(x + y)2 = x2 + 2xy + y2
But we know `y = 1/x`
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`(x + 1/x)^2 = x^2 + 1/x^2 + 2`
`x^2 + 1/x^2 = (x + 1/x)^2 - 2`
= `((sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) + (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)))^2 - 2`
= `(((sqrt(3) + sqrt(2))^2 + (sqrt(3) - sqrt(2))^2)/((sqrt(3) - sqrt(2)) xx sqrt(3) + sqrt(2)))^2 - 2`
= `((3 + 2sqrt(6) + 2 - 3 - 2sqrt(6) + 2)/((sqrt(3) - sqrt(2)) xx (sqrt(3) + sqrt(2))))^2 - 2`
Here the denominators form the expansion as
(a + b) × (a – b) = (a2 – b2)
Here `a = sqrt(3)`
`b = sqrt(2)`
`a^2 = (sqrt(3))^2`
= 3
`b^2 = (sqrt(2))^2`
= 2
= `(10/(3 - 2))^2 - 2`
= 102 – 2
= 100 – 2
= 98
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
Write the rationalisation factor of \[\sqrt{5} - 2\].
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`