Advertisements
Advertisements
प्रश्न
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
उत्तर
Given that,`a = sqrt2` +1 hence `1/a`is given as
`1/a = 1/(sqrt2+1)`we are asked to find `a-1/a`
We know that rationalization factor for `sqrt2 +1` is `sqrt2 -1`. We will multiply each side of the given expression `1/(sqrt2+1)`by, `sqrt2-1` to get
`1/a = 1/(sqrt2+1) xx (sqrt2-1)/(sqrt2-1)`
` = (sqrt2 - 1) /((sqrt2^2) - (1)^2)`
`= (sqrt2 -1)/(2-1)`
`=sqrt2 - 1`
Therefore,
` a-1/a = sqrt2 +1- (sqrt2-1)`
` = sqrt2+1-sqrt2 +1`
`= 2`
Hence value of the given expression is 2.
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`