Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
उत्तर
The given number is `1/(sqrt5 + sqrt2)`
On rationalising the denominator,
⇒ `1/(sqrt5 + sqrt2) = 1/(sqrt5 + sqrt2) xx (sqrt5 - sqrt2)/(sqrt5 - sqrt2)`
We know that (a + b) (a - b) = a2 - b2
⇒ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/((sqrt5)^2 - (sqrt2)^2)`
⇒ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/(5 - 2)`
∴ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/3`
APPEARS IN
संबंधित प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(2 + sqrt3)/3`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`