Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
उत्तर
We know that rationalization factor for `3 - sqrt2` is `3 + sqrt2`. We will multiply numerator and denominator of the given expression `(3 + sqrt2)/(3 - sqrt2)` by `3 + sqrt2` to get
`(3 + sqrt2)/(3 - sqrt2) xx (3 + sqrt2)/(3 + sqrt2) = ((3)^2 + (sqrt2)^2 + 2 xx 3 sqrt2)/((3)^2 - (sqrt2)^2)`
`= (9 + 2 + 6sqrt2)/(9 - 2)`
` = (11 + 6sqrt2)/7`
`= 11/7 + 6/7 sqrt2`
On equating rational and irrational terms, we get
`a + bsqrt2 = 11/7 + 6/7 sqrt2`
Hence we get a = 11/7, b = 6/7
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
\[\sqrt{10} \times \sqrt{15}\] is equal to
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.