Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`
उत्तर
We know that rationalization factor for `7 + 4sqrt3` is `7 - 4sqrt3`. We will multiply numerator and denominator of the given expression `(5 + 3sqrt3)/(7 + 4sqrt3)` by `7 - 4sqrt3` to get
`(5 + 3sqrt3)/(7 + 4sqrt3) xx (7 - 4sqrt3)/(7 - 4sqrt3) = (5 xx 7 - 5 xx 4 xx sqrt3 + 3 xx 7 xx sqrt3 - 3 xx 4 xx (sqrt3)^2)/((7)^2 - (4sqrt3)^2)`
`= (35 - 20sqrt3 + 21sqrt3 - 36)/(49 - 49)`
`= (sqrt3 - 1)/1`
`= sqrt3 - 1`
On equating rational and irrational terms, we get
`a + bsqrt3 = sqrt3 - 1`
`= -1 + 1sqrt3`
Hence we get a = -1, b = 1
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Classify the following number as rational or irrational:
`1/sqrt2`
`root(4)root(3)(2^2)` equals to ______.
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.