Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`
उत्तर
We know that rationalization factor for `7 + 4sqrt3` is `7 - 4sqrt3`. We will multiply numerator and denominator of the given expression `(5 + 3sqrt3)/(7 + 4sqrt3)` by `7 - 4sqrt3` to get
`(5 + 3sqrt3)/(7 + 4sqrt3) xx (7 - 4sqrt3)/(7 - 4sqrt3) = (5 xx 7 - 5 xx 4 xx sqrt3 + 3 xx 7 xx sqrt3 - 3 xx 4 xx (sqrt3)^2)/((7)^2 - (4sqrt3)^2)`
`= (35 - 20sqrt3 + 21sqrt3 - 36)/(49 - 49)`
`= (sqrt3 - 1)/1`
`= sqrt3 - 1`
On equating rational and irrational terms, we get
`a + bsqrt3 = sqrt3 - 1`
`= -1 + 1sqrt3`
Hence we get a = -1, b = 1
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Write the reciprocal of \[5 + \sqrt{2}\].
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`