Advertisements
Advertisements
प्रश्न
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
उत्तर
We have, `(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
For rationalising the above equation, we multiply numerator and denominator of LHS by `3sqrt(2) + 2sqrt(3)`, we get
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) xx (3sqrt(2) + 2sqrt(3))/(3sqrt(2) + 2sqrt(3)) = 2 - bsqrt(6)`
⇒ `(sqrt(2)(3sqrt(2) + 2sqrt(3)) + sqrt(3)(3sqrt(2) + 2sqrt(3)))/((3sqrt(2))^2 - (2sqrt(3))^2) = 2 - bsqrt(6)` ...[Using identity, (a – b)(a + b) = a2 – b2]
⇒ `(6 + 2sqrt(6) + 3sqrt(6) + 6)/(18 - 12) = 2 - bsqrt(6)`
⇒ `(12 + 5sqrt(6))/6 = 2 - bsqrt(6)`
⇒ `2 + (5sqrt(6))/6 = 2 - bsqrt(6)`
⇒ `bsqrt(6) = - (5sqrt(6))/6`
∴ `b = -5/6`
APPEARS IN
संबंधित प्रश्न
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(2 + sqrt3)/3`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`