Advertisements
Advertisements
प्रश्न
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
उत्तर
We are asked to simplify`sqrt(3 - 2sqrt2)` It can be written in the form `(a-b)^2 = a^2 +b^2 - 2ab ` as
`sqrt(3-2sqrt2) = sqrt(2 +1 - 2 xx 1 xx sqrt2)`
` = sqrt((sqrt2)^2 + (1)^2 - 2xx 1xxsqrt2)`
` = sqrt((sqrt2 - 1)^2)`
` = sqrt2 - 1`
Hence the value of the given expression is`sqrt2 - 1`.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(2 + sqrt3)/3`
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Write the reciprocal of \[5 + \sqrt{2}\].
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`