Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
उत्तर
We know that `(a - b)(a + b) = a^2 - b^2`. We will use this property to simplify the expression
`(3 + sqrt3)(3 - sqrt3)`
`∴ (3 + sqrt3)(3 - sqrt3) = (3)^2 - (sqrt3)^2`
`= 3^2 - sqrt3 xx sqrt3`
`= 3 xx 3 - sqrt(3 xx 3)`
`= 9 - (3^2)^(1/2)`
`= 9 - 3^1`
= 6
Hence the value of expression is 6.
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(4)1250/root(4)2`
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.