Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
उत्तर
We can simplify the expression `(4 + sqrt7)(3 + sqrt2)` as
`(4 + sqrt7)(3 + sqrt2) = 4 xx 3 + 4 xx sqrt2 + 3 xx sqrt7 + sqrt7 xx sqrt2 `
`= 12 + 4sqrt2 + 3sqrt7 + sqrt(7xx2)`
`= 12 + 4sqrt2 + 3sqrt7 + sqrt14`
Hence the value of the expression is `12 + 4sqrt2 + 3sqrt7 + sqrt14`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following
`sqrt2/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Express the following with rational denominator:
`1/(3 + sqrt2)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`