Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
उत्तर
We know that rationalization factor for `2 + sqrt2` is `2 - sqrt2`. We will multiply numerator and denominator of the given expression `(4 + sqrt2)/(2 + sqrt2)` by `2 - sqrt2` to get
`(4 + sqrt2)/(2 + sqrt2) xx (2 - sqrt2)/(2 - sqrt2) = (4 xx 2 - 4 xx sqrt2 + 2 xx sqrt2 - (sqrt2)^2)/((2)^2 - (sqrt2)^2)`
`= (8 - 4sqrt2 + 2sqrt2 - 2)/(4 - 2)`
`= (6 - 2sqrt2)/2`
`= 3 - sqrt2`
On equating rational and irrational terms, we get
`a - sqrtb = 3 - sqrt2`
Hence we get a = 3, b = 2
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
The rationalisation factor of \[2 + \sqrt{3}\] is
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Simplify:
`(1/27)^((-2)/3)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`