Advertisements
Advertisements
Question
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Solution
We know that rationalization factor for `2 + sqrt2` is `2 - sqrt2`. We will multiply numerator and denominator of the given expression `(4 + sqrt2)/(2 + sqrt2)` by `2 - sqrt2` to get
`(4 + sqrt2)/(2 + sqrt2) xx (2 - sqrt2)/(2 - sqrt2) = (4 xx 2 - 4 xx sqrt2 + 2 xx sqrt2 - (sqrt2)^2)/((2)^2 - (sqrt2)^2)`
`= (8 - 4sqrt2 + 2sqrt2 - 2)/(4 - 2)`
`= (6 - 2sqrt2)/2`
`= 3 - sqrt2`
On equating rational and irrational terms, we get
`a - sqrtb = 3 - sqrt2`
Hence we get a = 3, b = 2
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
Simplify the following:
`4sqrt12 xx 7sqrt6`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.