Advertisements
Advertisements
Question
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Solution
We know that rationalization factor for `2 + sqrt3`, `sqrt5 - sqrt3` and `2 - sqrt5` are `2 - sqrt3`, `sqrt5 + sqrt3` and `2 + sqrt5` respectively. We will multiply numerator and denominator of the given expression `1/(2 + sqrt3), 2/(sqrt5 - sqrt3) and 1/(2 - sqrt5)` by `2 - sqrt3`, `sqrt5 + sqrt3` and `2 + sqrt5` respectively, to get
`1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3) + 2/(sqrt5 - sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3) + 1/(2 - sqrt5) xx (2 + sqrt5)/(2 + sqrt5) = (2 - sqrt3)/((2)^2 - (sqrt3)^2) + (2sqrt5 + 2sqrt3)/((sqrt5)^2 - (sqrt3)^2) + (2 - sqrt5)/((2)^2 - (sqrt5)^2)`
`= (2 - sqrt3)/1 + (2sqrt5 + 2sqrt3)/(5 - 3) + (2 + sqrt5)/(4 - 5)`
`= (2 - sqrt3)/1 + (2sqrt2 + 2sqrt3)/2 + (2 + sqrt5)/(-1)`
`= 2 - sqrt3 + sqrt5 + sqrt3 - sqrt5 - 2`
= 0
Hence the given expression is simplified to 0
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`