Advertisements
Advertisements
प्रश्न
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
उत्तर
We know that rationalization factor for `2 + sqrt3`, `sqrt5 - sqrt3` and `2 - sqrt5` are `2 - sqrt3`, `sqrt5 + sqrt3` and `2 + sqrt5` respectively. We will multiply numerator and denominator of the given expression `1/(2 + sqrt3), 2/(sqrt5 - sqrt3) and 1/(2 - sqrt5)` by `2 - sqrt3`, `sqrt5 + sqrt3` and `2 + sqrt5` respectively, to get
`1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3) + 2/(sqrt5 - sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3) + 1/(2 - sqrt5) xx (2 + sqrt5)/(2 + sqrt5) = (2 - sqrt3)/((2)^2 - (sqrt3)^2) + (2sqrt5 + 2sqrt3)/((sqrt5)^2 - (sqrt3)^2) + (2 - sqrt5)/((2)^2 - (sqrt5)^2)`
`= (2 - sqrt3)/1 + (2sqrt5 + 2sqrt3)/(5 - 3) + (2 + sqrt5)/(4 - 5)`
`= (2 - sqrt3)/1 + (2sqrt2 + 2sqrt3)/2 + (2 + sqrt5)/(-1)`
`= 2 - sqrt3 + sqrt5 + sqrt3 - sqrt5 - 2`
= 0
Hence the given expression is simplified to 0
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`1/(3 + sqrt2)`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Classify the following number as rational or irrational:
`(3+sqrt23)-sqrt23`
Classify the following number as rational or irrational:
`(2sqrt7)/(7sqrt7)`
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Rationalise the denominator of the following:
`2/(3sqrt(3)`