Advertisements
Advertisements
प्रश्न
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
पर्याय
13
19
5
35
उत्तर
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as 19.
Explanation:
Given: Number `7/(3sqrt(3) - 2sqrt(2))`
After rationalising: `7/(3sqrt(3) - 2sqrt(2)) = 7/(3sqrt(3) - 2sqrt(2)) xx (3sqrt(3) + 2sqrt(2))/(3sqrt(3) + 2sqrt(2))`
= `(7(3sqrt(3) + 2sqrt(2)))/((3sqrt(3))^2 - 2(sqrt(2))^2`
= `(7(3sqrt(3) + 2sqrt(2)))/(27 - 8)`
= `(7(3sqrt(3) + 2sqrt(2)))/19`
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
Classify the following number as rational or irrational:
`(3+sqrt23)-sqrt23`
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`