Advertisements
Advertisements
प्रश्न
`1/(sqrt(9) - sqrt(8))` is equal to ______.
पर्याय
`1/2(3 - 2sqrt(2))`
`1/(3 + 2sqrt(2)`
`3 - 2sqrt(2)`
`3 + 2sqrt(2)`
उत्तर
`1/(sqrt(9) - sqrt(8))` is equal to `underlinebb(3 + 2sqrt(2))`.
Explanation:
`1/(sqrt(9) - sqrt(8)) = 1/(3 - 2sqrt(2))`
= `1/(3 - 2sqrt(2)) * (3 + 2sqrt(2))/(3 + 2sqrt(2))` ...`[∵ sqrt(8) = sqrt(2 xx 2 xx 2) = 2sqrt(2)]`
= `(3 + 2sqrt(2))/(9 - (2sqrt(2))^2` ...[Multiplying numerator and denominator by `3 + 2sqrt(2)`]
= `(3 + 2sqrt(2))/(9 - (2sqrt(2))^2` ...[Using identity (a – b)(a + b) = a2 – b2]
= `(3 + 2sqrt(2))/(9 - 8)`
= `3 + 2sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Rationalise the denominator of each of the following
`3/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Write the rationalisation factor of \[\sqrt{5} - 2\].
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`