Advertisements
Advertisements
प्रश्न
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
उत्तर
We know that rationalization factor for `6 + 4sqrt2` is `6 - 4sqrt2`. We will multiply numerator and denominator of the given expression `(6 - 4sqrt2)/(6 + 4sqrt2)` by `6 - 4sqrt2` to get
`(6 - 4sqrt2)/(6 + 4sqrt2) xx (6 - 4sqrt2)/(6 - 4sqrt2) = (6^2 + (4sqrt2)^2 - 2 xx 6 4 sqrt2)/((6)^2 - (4sqrt2)^2)`
` (36 + 16 xx 2 - 48sqrt2)/(36 - 16 xx 2)`
`= (36 + 32 - 48sqrt2)/(36 - 32)`
`= (68 - 48sqrt2)/4`
`= 17 - 12sqrt2`
Hence the given expression is simplified with rational denominator to `17 - 12sqrt2`
APPEARS IN
संबंधित प्रश्न
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Write the reciprocal of \[5 + \sqrt{2}\].
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`