Advertisements
Advertisements
प्रश्न
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
उत्तर
`sqrt(45) - 3sqrt20 + 4sqrt(5) = sqrt(3 xx 3 xx 5) - 3sqrt(2 xx 2 xx 2) + 4sqrt(5)`
= `3sqrt(5) - 3 xx 2sqrt(5) + 4sqrt(5)`
= `3sqrt(5) - 6sqrt(5) + 4sqrt(5)`
= `sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
The rationalisation factor of \[\sqrt{3}\] is
The rationalisation factor of \[2 + \sqrt{3}\] is
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`