Advertisements
Advertisements
प्रश्न
The rationalisation factor of \[\sqrt{3}\] is
पर्याय
\[- \sqrt{3}\]
\[\frac{1}{\sqrt{3}}\]
\[2\sqrt{3}\]
\[- 2\sqrt{3}\]
उत्तर
We know that rationalization factor for `sqrta` is `1/sqrta`. Hence rationalization factor of `sqrt3` is `1/sqrt3`.
APPEARS IN
संबंधित प्रश्न
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Write the reciprocal of \[5 + \sqrt{2}\].
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Rationalise the denominator of the following:
`1/(sqrt7-2)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Simplify:
`(1/27)^((-2)/3)`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`