Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`1/(sqrt7-2)`
उत्तर
The given number is `1/(sqrt7 - 2)`
On rationalising the denominator,
⇒ `1/(sqrt7 - 2) = 1/(sqrt7 - 2) xx (sqrt7 + 2)/(sqrt7 + 2)`
We know that (a + b) (a - b) = a2 - b2
⇒ `1/(sqrt7 - 2) = (sqrt7 + 2)/((sqrt7)^2 - (2)^2)`
⇒ `1/(sqrt7 - 2) = (sqrt7 + 2)/(7 - 4)`
∴ `1/(sqrt7 - 2) = (sqrt7 + 2)/3`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`