Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
उत्तर
We know that rationalization factor for `3 - 2sqrt2` is `3 + 2sqrt2`. We will multiply numerator and denominator of the given expression `(1 + sqrt2)/(3 - 2sqrt2)` by `3 + 2sqrt2`
`(1 + sqrt2)/(3 - 2sqrt2) xx (3 + 2sqrt2)/(3 + 2sqrt2) = (3 + 2sqrt2 + 3sqrt2 + 2 xx (sqrt2)^2)/((3)^2 - (2sqrt2)^2)`
` = (3 + 5sqrt2 + 4)/(9 - 4 xx 2)`
`= (7 + 5sqrt2)/(9 - 8)`
`= (7 + 5sqrt2)/1`
`= 7 + 5sqrt2`
Hence the given expression is simplified to `7 + 5sqrt2`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Rationalise the denominator of each of the following
`1/sqrt12`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.