Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
उत्तर
We know that rationalization factor for `3 - 2sqrt2` is `3 + 2sqrt2`. We will multiply numerator and denominator of the given expression `(1 + sqrt2)/(3 - 2sqrt2)` by `3 + 2sqrt2`
`(1 + sqrt2)/(3 - 2sqrt2) xx (3 + 2sqrt2)/(3 + 2sqrt2) = (3 + 2sqrt2 + 3sqrt2 + 2 xx (sqrt2)^2)/((3)^2 - (2sqrt2)^2)`
` = (3 + 5sqrt2 + 4)/(9 - 4 xx 2)`
`= (7 + 5sqrt2)/(9 - 8)`
`= (7 + 5sqrt2)/1`
`= 7 + 5sqrt2`
Hence the given expression is simplified to `7 + 5sqrt2`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
\[\sqrt{10} \times \sqrt{15}\] is equal to
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`