Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
उत्तर
We know that rationalization factor for `2sqrt2 + 3sqrt3` is `2sqrt2 - 3sqrt3`. We will multiply numerator and denominator of the given expression `(2sqrt3 - sqrt5)/(2sqrt3 + 3sqrt3)` by `2sqrt2 - 3sqrt3` to get
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3) xx (2sqrt2 - 3sqrt3)/(2sqrt2 - 3sqrt3) = (2 xx 2 xx sqrt3 xx sqrt2 - 2 xx 3 xx sqrt3 xx sqrt3 - 2 xx sqrt5 xx sqrt2 + 3 xx sqrt5 xx sqrt3)/((2sqrt2)^2 - (3sqrt3)^2)`
`= (4sqrt(3 xx 2) - 6 xx (sqrt3)^2 - 2 xx sqrt(5 xx 2) + 3 xx sqrt(5 xx 3))/(4 xx 2 - 9 xx 3)`
`= (4sqrt6 - 6 xx 3 - 2sqrt10 + 3 sqrt15)/(8 - 27)`
`= (4sqrt6 - 18 - 2sqrt10 + 3sqrt15)/(-19)`
`= (18 + 2sqrt10 - 3sqrt15 - 4sqrt6)/19`
Hence the given expression is simplified to `(18 + 2sqrt10 - 3sqrt15 - 4sqrt6)/19`
APPEARS IN
संबंधित प्रश्न
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
Write the rationalisation factor of \[\sqrt{5} - 2\].
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`