Advertisements
Advertisements
प्रश्न
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
उत्तर
We know that rationalization factor for `sqrt5 - sqrt3` and `sqrt5 + sqrt3` are `sqrt5 + sqrt3` and `sqrt5 - sqrt3` respectively.
We will multiply numerator and denominator of the given expression `(sqrt5 + sqrt3)/(sqrt5 - sqrt3)` and `(sqrt5 - sqrt3)/(sqrt5 + sqrt3)` by `sqrt5 + sqrt3` and `sqrt5 + sqrt3` respectively, to get
`(sqrt5 + sqrt3)/(sqrt5 - sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3) + (sqrt5 - sqrt3)/(sqrt5 + sqrt3) xx (sqrt5 - sqrt3)/(sqrt5 - sqrt3) = ((sqrt5)^2 + (sqrt3)^2 + 2 xx sqrt5 xx sqrt3)/((sqrt5)^2- (sqrt3)^2)`
`(5 + 3 + 2sqrt15)/(5- 3) + (5 + 3 - 2sqrt15)/(5 - 3)`
`= (5 + 3 + 2sqrt15 + 5 + 3 - 2sqrt15)/2`
= 16/2
= 8
Hence the given expression is simplified to 8
APPEARS IN
संबंधित प्रश्न
Classify the following numbers as rational or irrational:
`2-sqrt5`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Value of (256)0.16 × (256)0.09 is ______.
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`