Advertisements
Advertisements
प्रश्न
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
उत्तर
It is given that;
. `(sqrt3-1)/ (sqrt3+1 )= x+ysqrt3` we need to find x and y
We know that rationalization factor for `sqrt3 +1` is`sqrt3 -1` . We will multiply numerator and denominator of the given expression `(sqrt3-1)/(sqrt3+1)`by,`sqrt3-1` to get
`(sqrt3-1)/ (sqrt3+1 ) xx (sqrt3-1)/(sqrt3-1) = ((sqrt3)^2 + (1) ^2 - 2 xx sqrt3 xx1) /((sqrt3)^2 - (1)^2)`
`= (3+1-2sqrt3) /(3-1)`
` = (4-2sqrt3)/2`
` = 2-sqrt3`
On equating rational and irrational terms, we get
` x + y sqrt3 = 2-sqrt3`
Hence, we get ` x= 2, y = -1`
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(3)4 xx root(3)16`
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Write the rationalisation factor of \[\sqrt{5} - 2\].
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`