Advertisements
Advertisements
प्रश्न
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
उत्तर
We know that rationalization factor for `sqrt6 - sqrt5` is `sqrt6 + sqrt5`. We will multiply numerator and denominator of the given expression `1/(sqrt6 -sqrt5)` by `sqrt6 + sqrt5` to get
`1/(sqrt6 - sqrt5) xx (sqrt6 + sqrt5)/(sqrt6 + sqrt5) = (sqrt6 + sqrt6)/((sqrt6)^2 - (sqrt5)^2`
`= (sqrt6 + sqrt5)/(6 - 5)`
`= (sqrt6 + sqrt5)/(6 - 5)`
`= (sqrt6 + sqrt5)/1`
`= sqrt6 + sqrt5`
Hence the given expression is simplified with rational denominator to `sqrt6 + sqrt5`.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`