Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
उत्तर
We know that rationalization factor for `7 + 4sqrt3` is `7 - 4sqrt3`. We will multiply numerator and denominator of the given expression `(5 + 2sqrt3)/(7 + 4sqrt3)` by `7 - 4sqrt3` to get
`(5 + 2sqrt3)/(7 + 4sqrt3) xx (7 - 4sqrt3)/(7 - 4sqrt3) = (5xx7 - 5 xx 4sqrt3 + 2 xx 7 xx sqrt3 - 2 xx 4 xx (sqrt3)^2)/((7)^2 - (4sqrt3)^2)`
`= (35 - 20sqrt3 + 14sqrt3 - 8 xx 3)/(49 - 49)`
`= (11 - 6sqrt3)/1`
`= 11 - 6sqrt3`
Hence the given expression is simplified to `11 - 6sqrt3`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`