Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
उत्तर
We know that rationalization factor for `7 + 4sqrt3` is `7 - 4sqrt3`. We will multiply numerator and denominator of the given expression `(5 + 2sqrt3)/(7 + 4sqrt3)` by `7 - 4sqrt3` to get
`(5 + 2sqrt3)/(7 + 4sqrt3) xx (7 - 4sqrt3)/(7 - 4sqrt3) = (5xx7 - 5 xx 4sqrt3 + 2 xx 7 xx sqrt3 - 2 xx 4 xx (sqrt3)^2)/((7)^2 - (4sqrt3)^2)`
`= (35 - 20sqrt3 + 14sqrt3 - 8 xx 3)/(49 - 49)`
`= (11 - 6sqrt3)/1`
`= 11 - 6sqrt3`
Hence the given expression is simplified to `11 - 6sqrt3`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of each of the following
`3/sqrt5`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.