Advertisements
Advertisements
प्रश्न
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
उत्तर
Given that, `x= 2+sqrt3` hence
\[\frac{1}{x}\] is given as
. `1/x = 1/(2+sqrt3)`We are asked to find `x +1/x `
We know that rationalization factor for `2+sqrt3` is`2-sqrt3` . We will multiply each side of the given expression `1/(2+sqrt3)` by, `2-sqrt3` to get
. `1/x = 1/(2+sqrt3) xx(2-sqrt3)/(2-sqrt3)`
`= (2-sqrt3)/((2)^2-(sqrt3)^2)`
`= (2-sqrt3)/(4-3)`
`=2-sqrt3`
Therefore,
`x+1/x = 2+sqrt3 +2 - sqrt3`
`=4`
Hence value of the given expression is 4 .
APPEARS IN
संबंधित प्रश्न
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.