Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
उत्तर
Let `E = (4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
= `(4sqrt(3) + 5sqrt(2))/(sqrt(16 xx 3) + sqrt(9 xx 2))`
= `(4sqrt(3) + 5sqrt(2))/(4sqrt(3) + 3sqrt(2))`
For rationalising the denominator, multiplying numerator and denominator by `4sqrt(3) - 3sqrt(2)`,
= `(4sqrt(3) + 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) xx ((4sqrt(3) - 3sqrt(2)))/((4sqrt(3) - 3sqrt(2))`
= `(4sqrt(3)(4sqrt(3) - 3sqrt(2)) + 5sqrt(2) (4sqrt(3) - 3sqrt(2)))/((4sqrt(3))^2 - (3sqrt(2))^2` ...[Using identity, (a + b)(a – b) = a2 – b2]
= `(48 - 12sqrt(6) + 20sqrt(6) - 30)/30`
= `(18 + 8sqrt(6))/30`
= `(9 + 4sqrt(6))/15`
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(3)4 xx root(3)16`
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`