Advertisements
Advertisements
Question
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Solution
Let `E = (4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
= `(4sqrt(3) + 5sqrt(2))/(sqrt(16 xx 3) + sqrt(9 xx 2))`
= `(4sqrt(3) + 5sqrt(2))/(4sqrt(3) + 3sqrt(2))`
For rationalising the denominator, multiplying numerator and denominator by `4sqrt(3) - 3sqrt(2)`,
= `(4sqrt(3) + 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) xx ((4sqrt(3) - 3sqrt(2)))/((4sqrt(3) - 3sqrt(2))`
= `(4sqrt(3)(4sqrt(3) - 3sqrt(2)) + 5sqrt(2) (4sqrt(3) - 3sqrt(2)))/((4sqrt(3))^2 - (3sqrt(2))^2` ...[Using identity, (a + b)(a – b) = a2 – b2]
= `(48 - 12sqrt(6) + 20sqrt(6) - 30)/30`
= `(18 + 8sqrt(6))/30`
= `(9 + 4sqrt(6))/15`
APPEARS IN
RELATED QUESTIONS
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Rationalise the denominator of each of the following
`3/sqrt5`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
Write the rationalisation factor of \[\sqrt{5} - 2\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`