Advertisements
Advertisements
Question
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Solution
`sqrt(24)/8 + sqrt(54)/9 = sqrt(2 xx 2 xx 2 xx 3)/8 + sqrt(3 xx 3 xx 3 xx 2)/9`
= `(2sqrt(6))/8 + (3sqrt(6))/9`
= `sqrt(6)/4 + sqrt(6)/3`
= `(3sqrt(6) + 4sqrt(6))/12`
= `(7sqrt(6))/12`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of each of the following
`1/sqrt12`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Simplify the following:
`4sqrt12 xx 7sqrt6`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`