Advertisements
Advertisements
Question
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Solution
We have, `(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
For rationalising the above equation, we multiply numerator and denominator of LHS by `7 - 4sqrt(3)`, we get
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3)) = a - 6sqrt(3)`
`(5(7 - 4sqrt(3)) + 2sqrt(3)(7 - 4sqrt(3)))/(7^2 - (4sqrt(3))^2) = a - 6sqrt(3)` ...[Using identity, (a + b)(a – b) = a2 – b2]
⇒ `(35 - 20sqrt(3) + 14sqrt(3) - 24)/(49 - 48) = a - 6sqrt(3)`
⇒ `11 - 6sqrt(3) = a - 6sqrt(3) = a` = 11
APPEARS IN
RELATED QUESTIONS
Classify the following numbers as rational or irrational:
`2-sqrt5`
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Rationalise the denominator of the following:
`3/(2sqrt5)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Value of (256)0.16 × (256)0.09 is ______.