Advertisements
Advertisements
प्रश्न
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
उत्तर
We have, `(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
For rationalising the above equation, we multiply numerator and denominator of LHS by `7 - 4sqrt(3)`, we get
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3)) = a - 6sqrt(3)`
`(5(7 - 4sqrt(3)) + 2sqrt(3)(7 - 4sqrt(3)))/(7^2 - (4sqrt(3))^2) = a - 6sqrt(3)` ...[Using identity, (a + b)(a – b) = a2 – b2]
⇒ `(35 - 20sqrt(3) + 14sqrt(3) - 24)/(49 - 48) = a - 6sqrt(3)`
⇒ `11 - 6sqrt(3) = a - 6sqrt(3) = a` = 11
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`1/sqrt7`
Rationalise the denominator of each of the following
`1/sqrt12`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Simplify:
`(256)^(-(4^((-3)/2))`