Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
उत्तर
We know that rationalization factor for `sqrt3 + 1` is `sqrt3 - 1`. We will multiply numerator and denominator of the given expression `(sqrt3 - 1)/(sqrt3 + 1)` by `sqrt3 - 1` to get
`(sqrt3 - 1)/(sqrt3 + 1) xx (sqrt3 - 1)/(sqrt3 - 1) = ((sqrt3)^2 + (1)^2 - 2 xx sqrt3 xx 1)/((sqrt3)^2 - (1)^2)`
`= (3 + 1 - 2sqrt3)/(3 - 2)`
`= (4 - 2sqrt3`)/2`
`= 2 - sqrt3`
On equating rational and irrational terms, we get
`a - bsqrt3 = 2 - sqrt3`
`= 2 - 1sqrt3`
Hence we get a = 2, b = 1
APPEARS IN
संबंधित प्रश्न
Classify the following numbers as rational or irrational:
`2-sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Rationalise the denominator of the following:
`1/(sqrt7-2)`
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`