Advertisements
Advertisements
प्रश्न
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
उत्तर
We know that rationalization factor for `3sqrt2 + 2sqrt3` and `sqrt3 - sqrt2` are `3sqrt2 - 2sqrt3` and `sqrt3 + sqrt2`respectively. We will multiply numerator and denominator of the given expression `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3)` and `sqrt12/(sqrt3 - sqrt2)` by `3sqrt2 - 2sqrt3` and `sqrt3 + sqrt2` respectively to get
`(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) xx (3sqrt2 - 2sqrt3)/(3sqrt2 - 2sqrt3) + sqrt12/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2) = ((3sqrt2)^2 + (2sqrt3)^2 - 2 xx 3sqrt2 xx 2sqrt3)/((3sqrt2)^2 - (2sqrt3)^2) + (sqrt36 + sqrt24)/((sqrt3)^2 - (sqrt2)^2)`
`= (18 + 12 - 12sqrt6)/(18 - 12) + (6 + sqrt24)/(3 - 2)`
`= (30 - 12sqrt6 + 36 + 12sqrt6)/6`
`= 66/6`
= 11
Hence the given expression is simplified to 11
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`