Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
उत्तर
We know that `(a - b)(a + b) = a^2 - b^2`. We will use this porperty to simplify the expression
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
`∴(sqrt8 - sqrt2)(sqrt8 + sqrt2) = (sqrt8)^2 - (sqrt2)^2`
`= sqrt8 xx sqrt8 - sqrt2 xx sqrt2`
`= (8^2)^(1/2) - (2^2)^(1/2)`
`=8^1 - 2^1`
= 6
Hence the value of expression is 6
APPEARS IN
संबंधित प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
\[\sqrt{10} \times \sqrt{15}\] is equal to
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Classify the following number as rational or irrational:
`(3+sqrt23)-sqrt23`
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`