Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
उत्तर
We know that `(a + b)(a - b) = a^2 - b^2`We will use this property to simplify the expression
`(5 + sqrt7)(5 - sqrt7)`
`:. (5 + sqrt7)(5 - sqrt7) = 5^2 - (sqrt7)^2`
`= 5 xx 5 - sqrt7 xx sqrt7`
`25 - sqrt(7 xx 7)`
`= 25 - (7^2)^(1/2)`
`= 25 - 7^1`
= 18
Hence the value of expression is 18.
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
`root(4)root(3)(2^2)` equals to ______.
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`