Advertisements
Advertisements
प्रश्न
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
उत्तर
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
Rationalise the denominators:
⇒ `((7sqrt(3))/(sqrt(10) + sqrt(3)) xx (sqrt(10) - sqrt(3))/(sqrt(10) - sqrt(3))) - ((2sqrt(5))/(sqrt(6) + sqrt(3)) xx (sqrt(6) - sqrt(5))/(sqrt(6) - sqrt(5))) - ((3sqrt(2))/(sqrt(15) + 3sqrt(2)) xx (sqrt(15) - 3sqrt(2))/(sqrt(15) - 3sqrt(2)))`
⇒ `(7sqrt(3)(sqrt(10) - sqrt(3)))/(10 - 3) - (2sqrt(5)(sqrt(6) - sqrt(5)))/(6 - 5) - (3sqrt(2)(sqrt(15) - 3sqrt(2)))/(15 - 8)` ...[∵ a2 – b2 = (a + b)(a – b)]
⇒ `(7sqrt(3)(sqrt(10) - sqrt(3)))/(7) - (2sqrt(5)(sqrt(6) - sqrt(5)))/(1) - (3sqrt(2)(sqrt(15) - 3sqrt(2)))/(3)`
⇒ `(7sqrt(30) - 21)/7 - (2sqrt(30) - 10)/1 + (3sqrt(30) - 18)/3`
⇒ `(21sqrt(30) - 63 - 42sqrt(30) + 210 + 21sqrt(30) - 126)/21`
⇒ `21/21 = 1`
Hence the answer is 1.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
Rationalise the denominator of each of the following
`1/sqrt12`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`