Advertisements
Advertisements
Question
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
Solution
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
Rationalise the denominators:
⇒ `((7sqrt(3))/(sqrt(10) + sqrt(3)) xx (sqrt(10) - sqrt(3))/(sqrt(10) - sqrt(3))) - ((2sqrt(5))/(sqrt(6) + sqrt(3)) xx (sqrt(6) - sqrt(5))/(sqrt(6) - sqrt(5))) - ((3sqrt(2))/(sqrt(15) + 3sqrt(2)) xx (sqrt(15) - 3sqrt(2))/(sqrt(15) - 3sqrt(2)))`
⇒ `(7sqrt(3)(sqrt(10) - sqrt(3)))/(10 - 3) - (2sqrt(5)(sqrt(6) - sqrt(5)))/(6 - 5) - (3sqrt(2)(sqrt(15) - 3sqrt(2)))/(15 - 8)` ...[∵ a2 – b2 = (a + b)(a – b)]
⇒ `(7sqrt(3)(sqrt(10) - sqrt(3)))/(7) - (2sqrt(5)(sqrt(6) - sqrt(5)))/(1) - (3sqrt(2)(sqrt(15) - 3sqrt(2)))/(3)`
⇒ `(7sqrt(30) - 21)/7 - (2sqrt(30) - 10)/1 + (3sqrt(30) - 18)/3`
⇒ `(21sqrt(30) - 63 - 42sqrt(30) + 210 + 21sqrt(30) - 126)/21`
⇒ `21/21 = 1`
Hence the answer is 1.
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.