Advertisements
Advertisements
Question
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Solution
We can simplify the expression `(4 + sqrt7)(3 + sqrt2)` as
`(4 + sqrt7)(3 + sqrt2) = 4 xx 3 + 4 xx sqrt2 + 3 xx sqrt7 + sqrt7 xx sqrt2 `
`= 12 + 4sqrt2 + 3sqrt7 + sqrt(7xx2)`
`= 12 + 4sqrt2 + 3sqrt7 + sqrt14`
Hence the value of the expression is `12 + 4sqrt2 + 3sqrt7 + sqrt14`
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`(1/27)^((-2)/3)`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`