Advertisements
Advertisements
Question
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.
Solution
We have, `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`
= `(4(3sqrt(3) + 2sqrt(2)) + 3(3sqrt(3) - 2sqrt(2)))/((3sqrt(3) - 2sqrt(2))(3sqrt(3) + 2sqrt(2))`
= `(12sqrt(3) + 8sqrt(2) + 9sqrt(3) - 6sqrt(2))/((3sqrt(3))^2 - (2sqrt(2))^2` ...[Using identity, (a + b)(a – b) = a2 – b2]
= `(21sqrt(3) + 2sqrt(2))/(27 - 8)`
= `(21sqrt(3) + 2sqrt(2))/19`
= `(21 xx 1.732 + 2 xx 1.414)/19` ...`["Put" sqrt(2) = 1.414 "and" sqrt(3) = 1.732]`
= `(36.372 + 2.828)/19`
= `39.2/19`
= 2.06316
= 2.063
APPEARS IN
RELATED QUESTIONS
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Simplify:
`(256)^(-(4^((-3)/2))`