Advertisements
Advertisements
Question
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Solution
We know that rationalization factor for `sqrt48 + sqrt18` is `sqrt48 - sqrt18`. We will multiply numerator and denominator of the given expression `(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)` by `sqrt48 - sqrt18` to get
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18) xx (sqrt48 - sqrt18)/(sqrt48 - sqrt18) = (4 xx sqrt3 xx sqrt48 - 4 sqrt3 xx sqrt18 + 5 xx sqrt2 xx sqrt48 - 5 xx sqrt2 xx sqrt18)/((sqrt48)^2 - (sqrt18)^2)`
` = (4sqrt(3 xx 48) - 4 xx sqrt(3 xx 18) + 5 xx sqrt(2 xx 48) - 5 xx sqrt(2 xx 18))/(48 - 18)`
`= (4sqrt144 - 4sqrt54 + 5sqrt(96) - 5sqrt36)/30`
`= (4 xx 12 - 4 xx sqrt9 xx sqrt6 + 5 xx sqrt16 xx sqrt6 - 5sqrt36)/30`
`= (48 - 4 xx 3 xx sqrt6 + 5 xx 4 xx sqrt6 - 5 xx 6)/30`
`= (48 - 12sqrt6 + 20sqrt6 - 30)/30`
`= (18 + 8sqrt6)/30`
`= (9 + 4sqrt6)/15`
Hence the given expression is simplified to `(9 + 4sqrt6)/15`
APPEARS IN
RELATED QUESTIONS
Classify the following numbers as rational or irrational:
`2-sqrt5`
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
The rationalisation factor of \[2 + \sqrt{3}\] is
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`