Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
उत्तर
We know that rationalization factor for `sqrt48 + sqrt18` is `sqrt48 - sqrt18`. We will multiply numerator and denominator of the given expression `(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)` by `sqrt48 - sqrt18` to get
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18) xx (sqrt48 - sqrt18)/(sqrt48 - sqrt18) = (4 xx sqrt3 xx sqrt48 - 4 sqrt3 xx sqrt18 + 5 xx sqrt2 xx sqrt48 - 5 xx sqrt2 xx sqrt18)/((sqrt48)^2 - (sqrt18)^2)`
` = (4sqrt(3 xx 48) - 4 xx sqrt(3 xx 18) + 5 xx sqrt(2 xx 48) - 5 xx sqrt(2 xx 18))/(48 - 18)`
`= (4sqrt144 - 4sqrt54 + 5sqrt(96) - 5sqrt36)/30`
`= (4 xx 12 - 4 xx sqrt9 xx sqrt6 + 5 xx sqrt16 xx sqrt6 - 5sqrt36)/30`
`= (48 - 4 xx 3 xx sqrt6 + 5 xx 4 xx sqrt6 - 5 xx 6)/30`
`= (48 - 12sqrt6 + 20sqrt6 - 30)/30`
`= (18 + 8sqrt6)/30`
`= (9 + 4sqrt6)/15`
Hence the given expression is simplified to `(9 + 4sqrt6)/15`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`