Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
उत्तर
We can simplify the expression `(sqrt5 - 2)(sqrt3 - sqrt5)` as
`(sqrt5 - 2)(sqrt3 - sqrt5) = sqrt5 xx sqrt3 - sqrt5 xx sqrt5 - 2 xx sqrt3 + 2 xx sqrt5`
`= sqrt15 - sqrt(5 xx 5) - 2sqrt3 + 2sqrt5`
`=sqrt15 - (5^2)^(1/2) - 2sqrt3 +2sqrt5`
`= sqrt15 - (5^2)^(1/2) - 2sqrt3 + 2sqrt5`
`= sqrt15 - 5^1 - 2sqrt3 + 2sqrt5`
Hence the value of the expression is `sqrt15 - 2sqrt3 + 2sqrt5 - 5`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
The rationalisation factor of \[2 + \sqrt{3}\] is
Rationalise the denominator of the following:
`1/(sqrt7-2)`
Simplify the following:
`4sqrt12 xx 7sqrt6`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`