Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
उत्तर
We know that `(a + b)(a - b) = a^2 - b^2` We will use this property to simplify the expression
`(11 + sqrt11)(11 - sqrt11)`
`∴ (11 + sqrt11)(11 - sqrt11) = 11^2 - (sqrt11)^2`
`= 11 xx 11 - sqrt11 xx sqrt11`
`= 121 - sqrt(11 xx 11)`
`= 121 - (11^2)^(1/2)`
= 121 - 11
= 110
Hence the value of expression is 110.
APPEARS IN
संबंधित प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Classify the following number as rational or irrational:
`1/sqrt2`
Rationalise the denominator of the following:
`1/(sqrt7-2)`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`