Advertisements
Advertisements
प्रश्न
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
उत्तर
Given that:.`x = 3+2sqrt2` It can be written in the form `(a+b)^2 = a^2 +b^2 +2ab` as
`sqrtx = sqrt(3+2sqrt2)`
` = sqrt(2+1+2xx 1xxsqrt2)`
` = sqrt((sqrt2)^2+ (1)^2 +2 xx 1 xx sqrt2 `
` = sqrt((sqrt2+1)^2)`
` = sqrt2 +1`
Therefore,
`1/sqrtx = 1/(sqrt2+1)`
We know that rationalization factor for `sqrt2`+1 is `sqrt2`-1 . We will multiply numerator and denominator of the given expression `1/(sqrt2+1)`by, `sqrt2-1,`to get
`1/(sqrt2 +1) xx (sqrt2-1)/(sqrt2-1) = (sqrt2-1)/((sqrt2) ^2 - (1)^2)`
`=(sqrt2-1)/(2-1)`
`= sqrt2 - 1`
Hence
`sqrtx - 1/sqrtx = sqrt2 +1 - (sqrt2 - 1)`
` = sqrt 2+1 - sqrt2 +1`
` =2 `
Therefore, value of the given expression is 2.
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`