Advertisements
Advertisements
प्रश्न
\[\sqrt{10} \times \sqrt{15}\] is equal to
विकल्प
5\[\sqrt{6}\]
6\[\sqrt{5}\]
\[\sqrt{30}\]
\[\sqrt{25}\]
उत्तर
Given that`sqrt10 xx sqrt15`, it can be simplified as
`sqrt10 xx sqrt15 = sqrt(10 xx 15)`
` = sqrt150`
` = sqrt(25 xx 6)`
`= sqrt25 xx sqrt6`
` = 5sqrt6`
APPEARS IN
संबंधित प्रश्न
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
Simplify the following expression:
`(sqrt5+sqrt2)^2`
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`